Wednesday, 15 February 2017

What News-Writing Bots Mean for the Future of Journalism

When Republican Steve King beat back Democratic challenger Kim Weaver in the race for Iowa’s 4th congressional district seat in November, The Washington Post snapped into action, covering both the win and the wider electoral trend. “Republicans retained control of the House and lost only a handful of seats from their commanding majority,” the article read, “a stunning reversal of fortune after many GOP leaders feared double-digit losses.” The dispatch came with the clarity and verve for which Post reporters are known, with one key difference: It was generated by Heliograf, a bot that made its debut on the Post’s website last year and marked the most sophisticated use of artificial intelligence in journalism to date.

When Jeff Bezos bought the Post back in 2013, AI-powered journalism was in its infancy. A handful of companies with automated content-generating systems, like Narrative Science and Automated Insights, were capable of producing the bare-bones, data-heavy news items familiar to sports fans and stock analysts. But strategists at the Post saw the potential for an AI system that could generate explanatory, insightful articles. What’s more, they wanted a system that could foster “a seamless interaction” between human and machine, says Jeremy Gilbert, who joined the Post as director of strategic initiatives in 2014. “What we were interested in doing is looking at whether we can evolve stories over time,” he says.

After a few months of development, Heliograf debuted last year. An early version auto­published stories on the Rio Olympics; a more advanced version, with a stronger editorial voice, was soon introduced to cover the election. It works like this: Editors create narrative templates for the stories, including key phrases that account for a variety of potential outcomes (from “Republicans retained control of the House” to “Democrats regained control of the House”), and then they hook Heliograf up to any source of structured data—in the case of the election, the data clearinghouse VoteSmart.org. The Heliograf software identifies the relevant data, matches it with the corresponding phrases in the template, merges them, and then publishes different versions across different platforms. The system can also alert reporters via Slack of any anomalies it finds in the data—for instance, wider margins than predicted—so they can investigate. “It’s just one more way to get a tip” on a potential scoop, Gilbert says.

The Post’s main goal with the project at this point is twofold. First: Grow its audience. Instead of targeting a big audience with a small number of labor-intensive human-written stories, Heliograf can target many small audiences with a huge number of automated stories about niche or local topics. There may not be a wide audience for stories about the race for the Iowa 4th, but there is some audience, and, with local news outlets floundering, the Post can tap it. “It’s the Bezos concept of the Everything Store,” says Shailesh Prakash, CIO and VP of digital product development at the Post. “But growing is where you need a machine to help you, because we can’t have that many humans. We’d go bankrupt.”

0 comments:

Post a Comment